170 research outputs found

    Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion

    Get PDF
    Piezo1 is a mechanosensitive cation channel with widespread physiological importance; however, its role in the heart is poorly understood. Cardiac fibroblasts help preserve myocardial integrity and play a key role in regulating its repair and remodeling following stress or injury. Here we investigated Piezo1 expression and function in cultured human and mouse cardiac fibroblasts. RT-PCR experiments confirmed that Piezo1 mRNA in cardiac fibroblasts is expressed at levels similar to those in endothelial cells. The results of a Fura-2 intracellular Ca2+ assay validated Piezo1 as a functional ion channel that is activated by its agonist, Yoda1. Yoda1-induced Ca2+ entry was inhibited by Piezo1 blockers (gadolinium and ruthenium red) and was reduced proportionally by siRNA-mediated Piezo1 knockdown or in murine Piezo1+/− cells. Results from cell-attached patch clamp recordings on human cardiac fibroblasts established that they contain mechanically activated ion channels and that their pressure responses are reduced by Piezo1 knockdown. Investigation of Yoda1 effects on selected remodeling genes indicated that Piezo1 activation increases both mRNA levels and protein secretion of IL-6, a pro-hypertrophic and profibrotic cytokine, in a Piezo1-dependent manner. Moreover, Piezo1 knockdown reduced basal IL-6 expression from cells cultured on softer collagen-coated substrates. Multiplex kinase activity profiling combined with kinase inhibitor experiments and phosphospecific immunoblotting established that Piezo1 activation stimulates IL-6 secretion via the p38 mitogen-activated protein kinase downstream of Ca2+ entry. In summary, cardiac fibroblasts express mechanically activated Piezo1 channels coupled to secretion of the paracrine signaling molecule IL-6. Piezo1 may therefore be important in regulating cardiac remodeling

    Reading Text Increases Binocular Disparity in Dyslexic Children

    Get PDF
    Children with developmental dyslexia show reading impairment compared to their peers, despite being matched on IQ, socio-economic background, and educational opportunities. The neurological and cognitive basis of dyslexia remains a highly debated topic. Proponents of the magnocellular theory, which postulates abnormalities in the M-stream of the visual pathway cause developmental dyslexia, claim that children with dyslexia have deficient binocular coordination, and this is the underlying cause of developmental dyslexia. We measured binocular coordination during reading and a non-linguistic scanning task in three participant groups: adults, typically developing children, and children with dyslexia. A significant increase in fixation disparity was observed for dyslexic children solely when reading. Our study casts serious doubts on the claims of the magnocellular theory. The exclusivity of increased fixation disparity in dyslexics during reading might be a result of the allocation of inadequate attentional and/or cognitive resources to the reading process, or suboptimal linguistic processing per se

    Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels

    Get PDF
    The concentration of free cytosolic Ca(2+) and the voltage across the plasma membrane are major determinants of cell function. Ca(2+)-permeable non-selective cationic channels are known to regulate these parameters but understanding of these channels remains inadequate. Here we focus on Transient Receptor Potential Canonical 4 and 5 proteins (TRPC4 and TRPC5) which assemble as homomers or heteromerize with TRPC1 to form Ca(2+)-permeable non-selective cationic channels in many mammalian cell types. Multiple roles have been suggested including in epilepsy, innate fear, pain and cardiac remodeling but limitations in tools to probe these channels have restricted progress. A key question is whether we can overcome these limitations and develop tools which are high-quality, reliable, easy to use and readily accessible for all investigators. Here, through chemical synthesis and studies of native and over-expressed channels by Ca(2+) and patch-clamp assays, we describe compound 31 (C31), a remarkable small-molecule inhibitor of TRPC1/4/5 channels. Its potency ranged from 9 to 1300 pM, depending on the TRPC1/4/5 subtype and activation mechanism. Other channel types investigated were unaffected, including TRPC3, TRPC6, TRPV1, TRPV4, TRPA1, TRPM2, TRPM8 and store-operated Ca(2+) entry mediated by Orai1. These findings suggest identification of an important experimental tool compound which has much higher potency for inhibiting TRPC1/4/5 channels than previously reported agents, impressive specificity, and graded subtype selectivity within the TRPC1/4/5 channel family. The compound should greatly facilitate future studies of these ion channels. We suggest naming this TRPC1/4/5-inhibitory compound Pico145

    Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antigen-antibody interactions are key events in immune system, which provide important clues to the immune processes and responses. In Antigen-antibody interactions, the specific sites on the antigens that are directly bound by the B-cell produced antibodies are well known as B-cell epitopes. The identification of epitopes is a hot topic in bioinformatics because of their potential use in the epitope-based drug design. Although most B-cell epitopes are discontinuous (or conformational), insufficient effort has been put into the conformational epitope prediction, and the performance of existing methods is far from satisfaction.</p> <p>Results</p> <p>In order to develop the high-accuracy model, we focus on some possible aspects concerning the prediction performance, including the impact of interior residues, different contributions of adjacent residues, and the imbalanced data which contain much more non-epitope residues than epitope residues. In order to address above issues, we take following strategies. Firstly, a concept of 'thick surface patch' instead of 'surface patch' is introduced to describe the local spatial context of each surface residue, which considers the impact of interior residue. The comparison between the thick surface patch and the surface patch shows that interior residues contribute to the recognition of epitopes. Secondly, statistical significance of the distance distribution difference between non-epitope patches and epitope patches is observed, thus an adjacent residue distance feature is presented, which reflects the unequal contributions of adjacent residues to the location of binding sites. Thirdly, a bootstrapping and voting procedure is adopted to deal with the imbalanced dataset. Based on the above ideas, we propose a new method to identify the B-cell conformational epitopes from 3D structures by combining conventional features and the proposed feature, and the random forest (RF) algorithm is used as the classification engine. The experiments show that our method can predict conformational B-cell epitopes with high accuracy. Evaluated by leave-one-out cross validation (LOOCV), our method achieves the mean AUC value of 0.633 for the benchmark bound dataset, and the mean AUC value of 0.654 for the benchmark unbound dataset. When compared with the state-of-the-art prediction models in the independent test, our method demonstrates comparable or better performance.</p> <p>Conclusions</p> <p>Our method is demonstrated to be effective for the prediction of conformational epitopes. Based on the study, we develop a tool to predict the conformational epitopes from 3D structures, available at <url>http://code.google.com/p/my-project-bpredictor/downloads/list</url>.</p

    The Plasmodium falciparum STEVOR Multigene Family Mediates Antigenic Variation of the Infected Erythrocyte

    Get PDF
    Modifications of the Plasmodium falciparum–infected red blood cell (iRBC) surface have been linked to parasite-associated pathology. Such modifications enable the parasite to establish long-lasting chronic infection by evading antibody mediate immune recognition and splenic clearance. With the exception of the well-demonstrated roles of var-encoded PfEMP1 in virulence and immune evasion, the biological significance of other variant surface antigens (rif and stevor) is largely unknown. While PfEMP1 and RIFIN have been located on the iRBC surface, recent studies have located STEVOR at the iRBC membrane where it may be exposed on the erythrocyte surface. To investigate the role of STEVOR in more detail, we have developed antibodies against two putative STEVOR proteins and used a combination of indirect immunofluorescence assays (IFA), live IFA, flow cytometry, as well as agglutination assays, which enable us to demonstrate that STEVOR is clonally variant at the surface of schizont stage parasites. Crucially, expression of different STEVOR on the surface of the iRBC changes the antigenic property of the parasite. Taken together, our data for the first time demonstrate that STEVOR plays a role in creating antigenic diversity of schizont stage parasites, thereby adding additional complexity to the immunogenic properties of the iRBC. Furthermore, it clearly demonstrates that to obtain a complete understanding of how parasite-induced pathology is linked to variation on the surface of the iRBC, focusing the interactions of multiple multigene families needs to be considered

    Design and utilization of epitope-based databases and predictive tools

    Get PDF
    In the last decade, significant progress has been made in expanding the scope and depth of publicly available immunological databases and online analysis resources, which have become an integral part of the repertoire of tools available to the scientific community for basic and applied research. Herein, we present a general overview of different resources and databases currently available. Because of our association with the Immune Epitope Database and Analysis Resource, this resource is reviewed in more detail. Our review includes aspects such as the development of formal ontologies and the type and breadth of analytical tools available to predict epitopes and analyze immune epitope data. A common feature of immunological databases is the requirement to host large amounts of data extracted from disparate sources. Accordingly, we discuss and review processes to curate the immunological literature, as well as examples of how the curated data can be used to generate a meta-analysis of the epitope knowledge currently available for diseases of worldwide concern, such as influenza and malaria. Finally, we review the impact of immunological databases, by analyzing their usage and citations, and by categorizing the type of citations. Taken together, the results highlight the growing impact and utility of immunological databases for the scientific community

    How individuals change language

    Get PDF
    Languages emerge and change over time at the population level though interactions between individual speakers. It is, however, hard to directly observe how a single speaker's linguistic innovation precipitates a population-wide change in the language, and many theoretical proposals exist. We introduce a very general mathematical model that encompasses a wide variety of individual-level linguistic behaviours and provides statistical predictions for the population-level changes that result from them. This model allows us to compare the likelihood of empirically-attested changes in definite and indefinite articles in multiple languages under different assumptions on the way in which individuals learn and use language. We find that accounts of language change that appeal primarily to errors in childhood language acquisition are very weakly supported by the historical data, whereas those that allow speakers to change incrementally across the lifespan are more plausible, particularly when combined with social network effects

    The Lantern, 2010-2011

    Get PDF
    • The Graterford Department of Corrections • Visiting Room: Lewis Considers the Space & Time Continuum • String • The Tale of Lad Wadley • The Devout • One Moment in the Garden • Water, Focused and Tumbling • Bomber • Another • I Walked Home • Perhe • I Describe the Last Time My Parents Had Sex • Butterflies • Ship Without Fools • The Interview • Cyane • An Imaginary Portrait of Stella as a Young Girl • At the Farm Market in Early Autumn • Victor Jorgenson\u27s Photograph of the V-J Day Kiss • Lightning • The Citadel • Whenever You Come Home From School • It Came in a Dream • What I Know About Fission • Please Don\u27t Fire Me for Saying Such Things • Femina Irata • Thank You For Shopping • Sunday, November 27th • An Introduction to The Lifestyle • Laid-Off Perception • Good-Night, Sweet Prince • Requiem for a Marriage • Gertrude\u27s Book • Passing • Elk Run II • Shady Tides • A Quiet House • Tell Him. A Manual • Silence • Google This • The Dinner Table Dance • The Inevitable Extinction of Filing Cabinets • Chateau d\u27If • Man Smoking in Charcoal • Inside Auschwitz • Bark Glow • Anticipation • Look Up • Major News Networks • Others Wage War • Insert Bible Verse Here • The Empress • Candy Castle • Venice, Italy • Quebec • Bhutanese Child • Jumper • Pomegranates • Cover Image: Octopus Hathttps://digitalcommons.ursinus.edu/lantern/1176/thumbnail.jp

    RSpred, a set of Hidden Markov Models to detect and classify the RIFIN and STEVOR proteins of Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many parasites use multicopy protein families to avoid their host's immune system through a strategy called antigenic variation. RIFIN and STEVOR proteins are variable surface antigens uniquely found in the malaria parasites <it>Plasmodium falciparum </it>and <it>P. reichenowi</it>. Although these two protein families are different, they have more similarity to each other than to any other proteins described to date. As a result, they have been grouped together in one Pfam domain. However, a recent study has described the sub-division of the RIFIN protein family into several functionally distinct groups. These sub-groups require phylogenetic analysis to sort out, which is not practical for large-scale projects, such as the sequencing of patient isolates and meta-genomic analysis.</p> <p>Results</p> <p>We have manually curated the <it>rif </it>and <it>stevor </it>gene repertoires of two <it>Plasmodium falciparum </it>genomes, isolates DD2 and HB3. We have identified 25% of mis-annotated and ~30 missing <it>rif </it>and <it>stevor </it>genes. Using these data sets, as well as sequences from the well curated reference genome (isolate 3D7) and field isolate data from Uniprot, we have developed a tool named RSpred. The tool, based on a set of hidden Markov models and an evaluation program, automatically identifies STEVOR and RIFIN sequences as well as the sub-groups: A-RIFIN, B-RIFIN, B1-RIFIN and B2-RIFIN. In addition to these groups, we distinguish a small subset of STEVOR proteins that we named STEVOR-like, as they either differ remarkably from typical STEVOR proteins or are too fragmented to reach a high enough score. When compared to Pfam and TIGRFAMs, RSpred proves to be a more robust and more sensitive method. We have applied RSpred to the proteomes of several <it>P. falciparum </it>strains, <it>P. reichenowi, P. vivax</it>, <it>P. knowlesi </it>and the rodent malaria species. All groups were found in the <it>P. falciparum </it>strains, and also in the <it>P. reichenowi </it>parasite, whereas none were predicted in the other species.</p> <p>Conclusions</p> <p>We have generated a tool for the sorting of RIFIN and STEVOR proteins, large antigenic variant protein groups, into homogeneous sub-families. Assigning functions to such protein families requires their subdivision into meaningful groups such as we have shown for the RIFIN protein family. RSpred removes the need for complicated and time consuming phylogenetic analysis methods. It will benefit both research groups sequencing whole genomes as well as others working with field isolates. RSpred is freely accessible via <url>http://www.ifm.liu.se/bioinfo/</url>.</p
    corecore